Definitions | tt, ff, p  q, p  q, p   q,  b, e = e', deq-member(eq;x;L), a = b, a = b, qeq(r;s), q_less(a;b), q_le(r;s), eq_atom$n(x;y), [d] , a < b, x f y, a < b, null(as), x =a y, (i = j), i z j, i <z j, p =b q, X(e), E(X), f(x)?z, P   Q, P  Q, {x:A| B(x)} , prior(X), e  X, case b of inl(x) => s(x) | inr(y) => t(y), False,  e(X), t.1, local-state(f;base;X;e), n+m, if b then t else f fi , #$n, let x,y = A in B(x;y), AbsInterface(A), E, , P & Q,  x. t(x), x.A(x), pred(e), <a, b>, A, first(e), suptype(S; T), S T, Top, x:A.B(x), Void,  x,y. t(x;y), pred!(e;e'), , SWellFounded(R(x;y)), constant_function(f;A;B), b, , e < e', r s, val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , type List, Msg(M), kind(e), loc(e), Knd, kindcase(k; a.f(a); l,t.g(l;t) ), EOrderAxioms(E; pred?; info), x:A B(x), IdLnk, left + right, Unit, EqDecider(T), Type, P  Q, strong-subtype(A;B), , Id, f(a), a:A fp B(a), EState(T), ES, x:A. B(x), x:A B(x), t T, s = t |